TEE CHEMISTRY Semester 2 Examination 2002 SOLUTIONS

Part 1

1. d	6. d	11. b	16. b	21. b	26. a
2. a	7. b	12. c	17. c	22. b	27. d
3. b	8. a	13. d	18. b	23. d	28. c
4. b	9. c	14. a	19. a	24. b	29. c
5. c	10. b	15. d	20. b	25. c	30. b

Part 2

1.	(a)	Equation Observation	$3Fe^{2+}(aq) + 2PO_4^{3-}(aq) \rightarrow Fe_3(PO_4)_2$ (s) Pale green ppt produced
	(b)	Equation Observation	$Ag(s) + NO_{3}^{-}(aq) + 2H^{+}(aq) \rightarrow Ag^{+}(aq) + NO_{2}(g) + H_{2}O(\ell)$ Bubbles of brown acrid smelling gas produced. Metal dissolves to colourless solution
	(c)	Equation Observation	$Cl_2(g) + 2I^{-}(aq) \rightarrow I_2(aq) + 2C\ell^{-}(aq)$ Solution changes from colourless to orange/brown/red
	(d)	Equation Cr ₂ C	$D_7^{2-}(aq) + 3HCHO(aq) + 8H^+(aq) \rightarrow 2Cr^{3+}(aq) + 3HCOOH(aq) + 4H_2O(\ell)$

Observation Orange solution turns dark green

2.

Species	Structural formula (showing all valence electrons)	Draw (include all atoms)	Polarity (non Polar or Polar)
Iodate ion IO ₃ ⁻	.0. .1.0. .0.		Polar
Metasilicate ion SiO ₃ ²⁻	$\begin{bmatrix} \cdot 0 & \cdot 0 \\ \cdot 0 & \cdot \\ \cdot 0 & \cdot \end{bmatrix}^{2-}$	$\begin{bmatrix} 0 \\ \\ 0 \\ S^{i} \\ 0 \end{bmatrix}^{2}$	Non Polar
Selenium disulfide SeS ₂	S.Se S	s∕ ^{Si} ≽ _S	Polar

2	
3	•

Name	Formula
Aluminium Chromium Zinc Lead	Al Cr Zn Pb
Ethanoic acid Hydrogen fluoride Hydrogen sulphide etc	CH ₃ COOH HF H ₂ S etc
Propene	$CH_3CH = CH_2$
Water Ammonia	H ₂ O NH ₃
Graphite	С
1 – Butene or 2 – Butene	C_4H_8 or $CH_2CHCH_2CH_3$ or $CH_3CHCHCH_3$ etc
Sulphur	S

4. (a) $Mg(s) + F_2(g) \rightarrow MgF_2(s)$

- (b) Fast: Mg is a strong reducing agent so easily loses e⁻ and F₂ is a strong oxidising agent so easily gains e⁻
- 5. (a) $H^+ + OH^- \rightleftharpoons H_2O + Heat$
 - (b) Equilibrium constant is only constant at a given temperature that is it varies with temperature
 - (c) Increase in temperature results in greater concentration of H^+ (and OH^-)

```
as pH = -\log [H^+]
greater [H^+] means smaller pH
so pH is less than 7
```

	1	-	
4	4		
J	U	,	
	~		•

Solution	Name or formula of salt	Equation
Produces an acidic solution	NH₄Cℓ or NaHSO₄ etc	$NH_4^+ + H_2O \leftrightarrows NH_3 + H_3O^+$ or $HSO_4^- \leftrightarrows H^+ + SO_4^{2-}$ etc
Produces a basic solution	CH ₃ COONa or Na ₂ CO ₃ etc	$CH_{3}COO^{-} + H_{2}O \leftrightarrows CH_{3}COOH + OH^{-}$ or $CO_{3}^{2-} + H_{2}O \leftrightarrows HCO_{3}^{-} + OH^{-}$ etc

 $K = \frac{[Zn^{2+}] [NH_3]^2}{[NH_4^+]^2}$ $K = \frac{[SO_3]^2}{[SO_2]^2[O_2]}$

8.

Substances	Describe the Test	Observation for Magnesium nitrate solution	Observation for Zinc nitrate solution
Magnesium nitrate solution and Zinc nitrate solution	 Add excess OH⁻ to each Add excess NH₃ solution to each 	white ppt observed that persists even when each solution is added in excess	white ppt which dissolves to form a colourless solution when added in excess
	 3. Add clean Mg to solution (also use Mn & Al) NOTE: TEST 3 does not work very well in dilute solution 	no change	metal surface becomes dark (black)

Substances	Describe the Test	Observation for methyl-2-propanol	Observation for 1-propanol
methyl-2- propanol and 1-propanol	 Add acidified KMnO₄ solution 	solution remains purple	solution turns colourless (or brown ppt)
	2. Add acidified $Cr_2O_7^{2-}$ solution	solution remains orange	solution turns dark green
	3. Add Na metal	very slow colourless bubbles produced	colourless bubbles produced faster

\sim	
()	
9	
-	٠

Test Tube	Experiment	Observation	Explanation
1	A little concentrated sodium cyanide solution is added	solution becomes red	Inc conc of CN^- results in inc rate of forward reaction. This results in formation of more red $[Fe(CN)_6]^{3-}$
2	The solution is warmed	solution becomes red	Increase rate of forward reaction is more than inc rate of reverse reaction. This results in formation of more red $[Fe(CN)_6]^{3-}$
3	A little water is added	solution becomes yellow	Reduced conc means forward reaction is reduced more than reverse reaction (more moles on LHS) more yellow $[Fe(H_2O)_6]^{3+}$ produced

Part 3

1. (a) (i) ANODE: $C.Li \rightarrow C + Li^{+} + e^{-}$ (ii) Cathode $CoO_{2} + Li^{+} + e^{-} \rightarrow CoO_{2}.Li$ (iii) Overall reaction $CoO_{2} + C.Li + Li^{+} \rightarrow LiCoO_{2} + C + Li^{+}$ $OR COO_{2} + C.Li \rightarrow Li.CoO_{2} + C$ (b) $n(e^{-}) = \frac{It}{96490} = \frac{133 \times 10^{-3} \times 45 \times 60}{96490}$ Q = 359.1 C $= 3.7216 \times 10^{-3} \text{ mol}$ $n(Li) = n(e^{-}) = 3.7216 \times 10^{-3}$ $m(Li) = nM = 3.7216 \times 10^{-3} \times 6.941 = 0.0258 = 2.58 \times 10^{2} \text{ g}$ INCREASE IN MASS $2. \qquad Au_2O_3 \ + \ 6HI \ \rightarrow \ 2AuI \ + \ 2I_2 \ + \ 3H_2O$

(a)
$$n(Au_2O_3) = \frac{m}{M} = \frac{25.7}{442} = 0.05814 \text{ mol} [M(Au_2O) = 442 \text{ g mol}^{-1}]$$

 $n(HI) = \frac{PV}{RT} = \frac{116 \times 4.92}{8.315 \times 318} = 0.2158 \text{ mol}$
 $n(Au_2O_3)_{\text{required to use all HI}} = \frac{1}{6} n(HI) = \frac{1}{6} (0.2158) = 0.03597 \text{ mol}$
There is more than this so Au_2O_3 is in excess and HI is LR
Use $n(HI)$ to calculate quantities.
 Au_2O_3 : $n(Au_2O_3) \text{ left} = n(Au_2O_3)_{\text{original}} - n(Au_2O_3)_{\text{used}} = 0.05814 - 0.03597 = 0.022437 \text{ mol}$

m (Au₂O₃) left = nM =
$$0.022437 \times 442 = 9.92$$
 g

HI: This is all used up as it is the limiting reagent
So amount left
$$= 0.00g$$

AuI:
$$n(AuI) \text{ produced} = \frac{2}{6} n(HI) = \frac{2}{6} (0.2158) = 0.07193 \text{ mol}$$

 $m(AuI) \text{ produced} = nM = 0.07193 \times 323.9 = \underline{23.3 \text{ g}}$
 I_2 : $n(I_2) = \frac{2}{6} n(HI) = \frac{2}{6} (0.2158) = 0.07193 \text{ mol}$

$$m(I_2) = nM = 0.07193 \times 253.8 = 18.3 g$$

H₂O:
$$n(H_2O) = \frac{3}{6} n(HI) = \frac{3}{6} (0.2158) = 0.1079 \text{ mol}$$

$$m(H_2O) = nM = 0.1079 \times 18.016 = 1.94g$$

3. (a)
$$\operatorname{SnO}_2 + 4\operatorname{H}^+ \to \operatorname{Sn}^{4+} + 2\operatorname{H}_2\operatorname{O}$$

(b)
$$\frac{(\text{Sn}^2 \to \text{Sn}^4 + 2\text{e}^-)5}{(\text{MnO}_4^- + 8\text{H}^+ 5\text{e}^- \to \text{Mn}^{2+} + 4\text{H}_2\text{O})2}{5\text{Sn}^{2+} + 2\text{MnO}_4^- = 16\text{H}^+ \to 5\text{Sn}^{4+} + 2\text{Mn}^{2+} + 8\text{H}_2\text{O}}$$

$$V (MnO_{4}^{-}) = \frac{23.45 + 23.52 + 23.56}{3} = 23.51 \text{ mL}$$

$$n (MnO_{4}^{-})_{used} = cV = 0.0192 \times 0.02351 = 4.514 \times 10^{-4} \text{ mol}$$

$$n (Sn^{2^{+}})_{in 20 \text{ mL}} = \frac{5}{2} n (MnO_{4}^{-}) = \frac{5}{2} (4.514 \times 10^{-4}) = 1.1285 \times 10^{-3} \text{ mol}$$

$$n(Sn^{2^{+}})_{in \text{ sample}} = n(Sn^{2^{+}})_{in 250\text{mL}} = \frac{250}{20} \times 1.1285 \times 10^{-3} = 0.014106 \text{ mol}$$

$$m(Sn) = nM = 0.014106 \times 118.7 = 1.6744 \text{ g}$$

% Sn =
$$\frac{1.6744}{2.562} \times 100 = 65.4\%$$

4. (a)
$$m(H_2O) = 12.56 - 11.518 = 1.042 \text{ g}$$

 $m(H) = \frac{2.016}{18.016} \times 1.042 = 0.1166 \text{ g}$
 $m(NO_2) = 11.518 - 10.454 = 1.064\text{g}$
 $m(N) = \frac{14.01}{46.01} \times 1.064 = 0.3240\text{g}$
 $m(S) = \frac{32.06}{233.36} \times 5.398 = 0.7416\text{g}$
 $m(C) = 3.127 - (0.1166 + 0.3240 + 0.7416) = 1.945 \text{ g}$

Empirical formula is $\underline{C_7H_5NS}$

(b)
$$n(\text{compound}) = \frac{PV}{RT} = \frac{103.5 \times 0.4155}{8.315 \times 295} = 0.01755 \text{ mol}$$

 $n = \frac{m}{M} \therefore M = \frac{m}{n} = \frac{2.372}{0.01755} = 135.2$

$$M(C_7H_5NS) = 135.18$$

: Molecular formula = Empirical formula

5. (a) m(FeO) in 1 tonne = 0.05×10^6 = 50,000 g

$$n(FeO) = \frac{m}{M} = \frac{50,000}{71.85} = 695.89 \text{ mol} \qquad [M(FeO) = 71.85 \text{ g mol}^{-1}]$$

$$n(C\ell_2)_{\text{reacted with FeO}} = n(FeO) = 695.89 \text{ mol}$$

$$m(C\ell_2)_{\text{reacted with FeO}} = nM = 695.89 \times 35.45 \times 2 = 49338.9 \text{ g}$$

$$n(C_6H_5CH_3) = \frac{m}{M} = \frac{35.0 \times 10^3}{92.134} = 379.88 \text{ mol} \qquad [M(C_6H_5CH_3) = 92.134 \text{ g mol}^{-1}]$$

$$n(C\ell) = n(HC\ell) = 8 \times n(C_6H_5CH_3) = 8(379.88) = 3039.05 \text{ mol}$$

$$m(C\ell) = nM = 3039.05 \times 35.45 = 107734.39 \text{ g}$$

$$m(C\ell)_{\text{total lost}} = 49338.9 + 107734.39 = 157073.3 \text{ g} = \frac{157 \text{ kg}}{157073.3 \text{ g}}$$

(b)
$$m(TiO_2) = 0.95 \times 10^6 = 950,000 \text{ g}$$

$$n(TiO_2) = \frac{m}{M} = \frac{950,000}{79.88} = 11892.8 \text{ mol}$$
 [M(TiO₂) = 79.88g mol⁻¹]

 $n(C\ell_2)_{reacted with TiO2} = 2n(TiO_2) = 2(11892.8) = 23785.7 mol$

m(C ℓ_2) reacted with TiO₂ = nM = 23785.7 × 35.45 × 2 = 1686404.6g

$$m(C\ell)_{\text{total used}} = m(C\ell_2)_{\text{reacted with FeO}} + m(C\ell_2) \text{ reacted with TiO}_2$$

= 49338.9 + 1686404.6
= 1,735,743.5 g = 1735.7 kg

% C
$$\ell$$
 lost = $\frac{m(C\ell)_{lost}}{m(C\ell)_{used}} \times 100 = \frac{157}{1735.7} \times 100 = 9.05\%$

For answers to Part 4 please see the Extended <u>Answer Question Answers</u>